
Creating Resilient Architectures on Microsoft Azure | Cover

Creating Resilient Architectures
on Microsoft Azure

Creating Resilient Architectures on Microsoft Azure | Page 1

Table of Contents
Introduction	 2

What is a resilient architecture?	 4	

Azure strengths in a resilient architecture	 7

Key considerations for planning, 	 9
implementing and operating in
a resilient environment		

Implementation	 13

Operation	 17

Scenarios	 19

Conclusion	 22

Why Rackspace for Microsoft workloads?	 23

About Rackspace	 24

Creating Resilient Architectures on Microsoft Azure | Page 2

Introduction
RESILIENCY:	 noun

1.	the power or ability to return to the original form, position, etc., after being bent,
compressed or stretched; self-healing.

2. the ability to recover readily from failure, faults, user error, overuse or the like.

Today, just about everyone needs instant access to applications, compute and data
services. The number of people connected, and the devices they use to connect to
these services, are ever growing. And in this world of always-on services, the systems
that support them must be designed to be both highly available and resilient.

When we ask customers if their applications and infrastructure are resilient and built to
handle both temporary and large-scale failures, most will answer “yes.” But before you
answer that question for your business, ask yourself these three questions:

•	 What are the defined service level agreements (SLAs) for your applications?
Do you have SLAs for all the workloads that contribute to your application?

•	 Have you mapped the failure points and can you quantify the business impact
a particular failure might have?

•	 Do you regularly measure the health of your infrastructure and applications?

Chances are, you probably can’t answer “yes” to all of these. That’s because a resilient
application and infrastructure need a great deal of upfront planning and architecting,
and require ongoing analysis and management throughout its lifecycle. Often, these
needs aren’t addressed until there is an issue because of time or resource constraints.

But in the cloud, it is more critical than ever that applications and infrastructure are
designed and operated with an eye toward resiliency at every step. Your applica-
tions and services will be deployed in cloud environments that are populated with
hardware and infrastructure in pre-defined configurations. Historically, you may have
purchased higher-end hardware to scale up. But in cloud environments, you must scale
out instead. You keep costs for these cloud environments low by using commodity
hardware. Commodity hardware will fail, and the cloud requires the architecture to
truly embrace failure. In the past, you may have focused on preventing failures and
optimizing “meantime to fail.” In the Azure environment, the focus shifts to one of
“meantime to restore.”

In the cloud, we must change our thinking. Things are going to fail, and you need to
build that into your plan and design for failure. Your applications now have dependen-
cies on things outside your control like hardware in the data center or outside applica-
tion services or an internet connection. Now your focus is on identifying what can
potentially go wrong and how your application will handle those failures.

Creating Resilient Architectures on Microsoft Azure | Page 3

Planning for failures and disasters in the cloud requires you to understand what can
cause an outage, recognize the failures quickly and have a plan to restore service when
something does go wrong. You then implement a strategy that matches your tolerance
for the application’s downtime. Additionally, you have to consider the extent of data
loss the application can tolerate without causing adverse business consequences once it
is restored.

In this paper, we’ll walk through an overview of planning, implementing and operating
resilient architecture in an Azure environment, and share some real-world examples.

Creating Resilient Architectures on Microsoft Azure | Page 4

What is a resilient architecture?
Usually when people talk about a resilient architecture there are two perspectives. The
first is a hardware perspective, and the second is an application (software or service)
perspective. In today’s cloud environment you need to look at a combination of both to
be truly resilient.

A resilient architecture should:

•	 Maximize service availability for consumers – ensure customers can access
and use the service

•	 Minimize the impact of a failure on consumers – degrade gracefully, isolate
faults and fallback to alternate delivery paths

•	 Maximize performance and capacity – provide services that are available and
can handle the desired/required demand

One company that embraces resiliency for their online service is Netflix. By embracing
failure and frequently testing its ability to recover from outages of all kinds, Netflix is
better prepared for the inevitable failures that will occur and to minimize the business
impact. For example, during an outage at its cloud provider, Netflix utilized an older
video queue for customers when the primary data store was not available.

Another example of resilience would be an ecommerce site that can continue to collect
orders if its payment gateway is suddenly unavailable. This resiliency may manifest itself
as the ability to process orders when the payment gateway is once again available or
after failing over to a secondary payment gateway.

The most common characteristics of a resilient architecture include:

•	 Fault tolerance
•	 Availability
•	 Scalability
•	 Self-healing
•	 Automation
•	 Redundancies
•	 Reporting

FAULT TOLERANCE

Resilient applications assume that every dependent cloud capability can and will go
down at some point in time. A fault tolerant application detects and maneuvers around
failure points to continue and return the correct results within a specific timeframe.
A fault tolerant system will employ a retry policy for intermittent or transient error
conditions. For more serious faults, the application can detect problems and fail over
to alternative hardware or contingency plans until the failure is corrected. A resilient
application will handle the failure of one or more parts and continue operating properly.
Fault-tolerant applications may use one or more design strategies, such as redundancy,
replication or degraded functionality.

Creating Resilient Architectures on Microsoft Azure | Page 5

AVAILABILITY

A resilient application understands the availability of its underlying infrastructure and
dependent services, and removes single points of failure through redundancy and
design. In Azure, we focus on the concept of effective availability of the overall applica-
tion or service. Effective availability considers the service level agreements (SLA) of each
dependent service and their cumulative effect on the total system availability. The more
moving parts within the system, the more care you must take to ensure the application
can meet the availability requirements of its end users.

SCALABILITY

Scalability directly affects resiliency. An application that fails under increased load is no
longer available. Scalable applications are able to meet increased demand with consis-
tent results in acceptable time windows.

When an application is scalable, it scales horizontally or vertically to manage increases
in load while maintaining consistent performance. Horizontal scaling adds more servers
or VMs (virtual machines) of the same size (processor, memory, and bandwidth), while
vertical scaling increases the size of the existing machines.

For Azure, there are vertical scaling options for selecting various machine sizes for
compute hosting. However, changing the machine size requires a time consuming
re-deployment. Consequently, the most flexible solutions are designed for horizontal
scaling. This is especially true for compute hosting because you can easily increase the
number of running instances of any web or worker role and it also works well with
services such as Azure Storage, which do not provide tiered options for vertical scaling.

SELF-HEALING

Self-healing describes any application or service that has the ability to recognize that it
is not operating correctly and, without human intervention, make the necessary adjust-
ments to restore itself to normal operations. For example, if you have a server that is
leaking memory, disk space or other resources, a self-healing service could automati-
cally reboot or re-image the server.

Creating Resilient Architectures on Microsoft Azure | Page 6

AUTOMATION

Automation provides a method for eliminating downtime due to human error. The
more automation you can build into your resilient architecture, the less likely your appli-
cation will be subject to downtime.

REDUNDANCIES

With Azure, deploying and managing redundant systems is handled by Microsoft from
a hardware perspective. You’ll need to focus your planning and resources more on the
software side. Designing a redundant application is critical.

REPORTING

Being able to measure the health of your systems on a regular and ongoing basis is
a step that is often overlooked. Understanding the performance and health of your
applications not only helps provide a positive user experience, but also helps ensure that
your application is available and meeting the pre-defined SLAs.

Creating Resilient Architectures on Microsoft Azure | Page 7

Azure strengths in a resilient architecture
An architecture can only be as resilient as its base components. Microsoft built Azure
from the ground up to provide a resilient platform for your applications and services using
a combination of baseline platform technologies and configurable features. The following
are key features of Azure that give you the ability to build a truly resilient architecture.

Azure Fabric Controller (FC): The Azure Fabric Controller is responsible for provisioning,
delivery and monitoring of Azure compute instances. The Fabric Controller checks the
status of the hardware and software of the host and guest machine instances. When it
detects a failure, it enforces SLAs by automatically relocating the VM instances.

Fault Domains: When multiple role instances are deployed, Azure deploys these
instances to different Fault Domains. A Fault Domain boundary is basically a different
hardware rack in the same data center as depicted in the diagram below. Fault Domains
reduce the probability that a localized hardware failure will interrupt the service of an
application.

Fault Domain

Rack

Virtual Machine

Virtual Machine

ISS 1

SQL 1

Fault Domain

Rack

Virtual Machine

Virtual Machine

ISS 2

SQL 2

Web Availability Set

SQL Availability Set

Creating Resilient Architectures on Microsoft Azure | Page 8

Replicas: In addition, Azure embeds high availability features into its other services.
For example, Azure Storage maintains three replicas of data. It also allows the option
of geo-replication to store backups in a secondary data center. The Azure Content
Delivery Network (CDN) allows caching around the world for both redundancy and
scalability. Azure SQL Database maintains multiple replicas as well (depicted in the
below diagram).

Availability Sets: There are also specific availability features for Azure Virtual
Machines that use an Infrastructure-as-a-Service (IaaS) model. In order to achieve high
availability with Virtual Machines, you must use Availability Sets. An Availability Set
serves a similar function to Fault and Upgrade Domains. Within an Availability Set,
Azure positions the virtual machines in a way that prevents localized hardware faults
and maintenance activities from bringing down all of the machines in that group.

SQL

SQL READ/WRITE

READ ONLY

Active geo
replication DATA REPLICATIONSECONDARY REGION

END USERS

PRIMARY REGIONCUSTOMER

TRAFFIC

Creating Resilient Architectures on Microsoft Azure | Page 9

Key considerations for planning,
implementing and operating in
a resilient environment
A resilient architecture doesn’t happen by chance. You’ll need to build resiliency into every
step of your application deployment, from the initial planning, to implementation and
through day-to-day operations. Your organization will need to make a business decision
as to which applications warrant a truly resilient architecture, because building in resiliency
is a trade-off between cost and availability.

Below we’ll discuss some of the key considerations for each phase.

PLANNING

Much like building a house, you need to start with detailed, well-thought-out plans that
have been developed by experts in the field. This can eliminate problems and unnecessary
costs down the road. Planning for resiliency typically will also include key activities such as
establishing application availability goals and business requirements, identifying potential
failure points, automation and backup strategies.

ESTABLISHING AN AVAILABILITY MODEL AND PLAN:

An availability model for your application identifies the level of availability that is expected
for your workload. For example, an application that is built to provide traffic informa-
tion would have a high level of availability expected during rush hour. Similarly, an online
retail application would require high availability during the holiday season or promotional
periods. Identifying an availability plan is critical as it will inform many of the decisions
you’ll make when establishing your service. Most services will take a dependency on a
third party service – if only for hosting. It’s imperative to understand the SLAs of these
dependent services and incorporate them into your availability plan.

DECOMPOSING THE APPLICATION BY WORKLOAD:

Applications are typically composed of multiple workloads. Different workloads can,
and often do, have different requirements, different levels of criticality to the business,
and different levels of financial consideration associated with them. By decomposing
an application into workloads, an organization provides itself with valuable flexibility. A
workload-centric approach provides better controls over costs, more flexibility in choosing
technologies best suited to the workload, workload-specific approaches to availability and
security, and flexibility and agility in adding and deploying new capabilities.

Decomposition also allows you to have different internal SLAs at the workload level. An
example of this is a weather application. You can split this into two workloads: daily fore-
casts and storm alerts. During storm alerts, your target SLA may be higher than your daily
forecasts target SLA because there will be greater demand and there may be backlash if
your application can’t provide the data as expected.

Creating Resilient Architectures on Microsoft Azure | Page 10

Decomposition by workload allows you to have SLAs tailored to the availability needs of
the aggregated workload of the composite service.

DEFINING THE AVAILABILITY OR DESIRED SLA

You may or may not publish a public SLA for your service, but regardless, your archi-
tecture should target an availability baseline that you will aspire to meet. Decomposing
your application to the workload level allows you to make decisions and implement
approaches for availability. Delivering 99.99% uptime for your entire application may
be unfeasible, but for an individual workload in an application, it is achievable. Even
commercial service providers do not offer 100% SLAs because the complexity and cost
to deliver that level of SLA is unfeasible or unprofitable.

Depending on the type of solution you are building, there may be a number of consid-
erations and options for delivering higher availability. Taking advantage of existing
services, whether yours or from a third party, can provide significant agility in delivering
solutions. While attractive, it is important to truly understand the impacts these depen-
dencies have on the overall SLA for your complete application or service.

Understanding the number of “9s”: Availability is typically expressed as a
percentage of uptime in a given year and is referred to as the number of “9s.” For
example, 99.9 represents a service with “three nines” and 99.999 represents a service
with “five nines.”

One common misconception is related to the number of “9s” a composite service
provides. It is often assumed that if a given service is composed of 5 services, each
with a promised 99.99% uptime in its SLAs, that the resulting composite service has
availability of 99.99%. This is not the case.

The composite SLA is actually a calculation that considers the amount of downtime per
year. A service with an SLA of “four 9s” (99.99%) can be offline up to 52.56 minutes.
Incorporating five services with a 99.99% SLA into a composite introduces an identified
SLA risk of 262.8 minutes or 4.38 hours. This reduces the availability to 99.95% before
a single line of code is written!

DEFINING THE BUSINESS’ TOLERANCE FOR OUTAGE

Every outage should be a concern for any organization, but every organization has its
own tolerance for system outages and expected recovery times. A media company
that manages both radio stations and digital billboards may have very low tolerance
for outage due to audience and advertiser expectations that their ads be seen 24x7.
However, a large durable goods manufacturer may have a much higher tolerance
simply due to the long lead times involved and the minimum impact a short application
or service outage would have on customers.

Creating Resilient Architectures on Microsoft Azure | Page 11

Even within an organization, there can be varying degrees of tolerance based on busi-
ness function. An insurance company may define campaign and underwriting systems
as critical with very little outage tolerance, while claims management might be more
forgiving in terms of downtime. As with any systems planning, the balance will always
be cost to mitigate versus impact to business operations.

IDENTIFYING FAILURE POINTS, FAILURE MODES AND FAILURE EFFECTS

To create a resilient architecture, it’s important to understand and document what can
cause an outage. Understanding the failure points and failure modes for an applica-
tion and its related workloads can enable you to make informed, targeted decisions on
strategies for building in resiliency and availability.

Failure points are areas where failures may result in a service interruption. An impor-
tant focus is on design elements that are subject to external change. Examples of failure
points include database connections, website connections, configuration files and
Registry keys.

Failure modes identify the specific manner in which a failure can occur. Examples of
failure modes include:

•	 A missing configuration file

•	 Significant traffic exceeding resource capacity

•	 A database reaching maximum capacity

Failure effects are the consequences of failure on functionality. Examples of failure
effects include service not available to users or degraded application performance. By
identifying the effects of failure and the frequency at which these types of failures are
likely to occur, you can prioritize when and how you address the failure points and
failure modes of your application or service.

ESTABLISHING A DATA RESILIENCY APPROACH

While Azure will store multiple copies of the data in your application, the data that is
stored is driven by the application, workload and its component services. If the applica-
tion takes an action that corrupts its application data, the platform stores multiple copies
of it. When identifying your failure modes and failure points it’s important to recognize
areas of the application that could potentially cause data corruption no matter where the
bad data comes from.

REMOVING THE HUMAN FACTOR THROUGH AUTOMATION

People make mistakes. Whether it’s a developer making a code change that could have
unexpected consequences, a DBA accidentally dropping a table in a database or an
operations person who makes a change but doesn’t document it, there are multiple
opportunities for a person to inadvertently make a service less resilient.

Creating Resilient Architectures on Microsoft Azure | Page 12

To reduce human error, one approach is to reduce the amount of human interaction in
the process. Through the introduction of automation, you limit the ability for ad hoc,
inadvertent deltas from expected behavior to jeopardize your service.

Start by focusing on automation in the building and deployment of a solution. Auto-
mation can make it easy for a development team to test and deploy to multiple
environments. Development, test, staging, beta and production can all be deployed
consistently through automated builds. The ability to deploy consistently across environ-
ments works toward ensuring that what’s in production is representative of what’s
been tested.

An example of automation is scripting. Scripting makes deployment and management
consistent, predictable and pays significant dividends for the upfront investment.

CREATING A BACKUP STRATEGY

Processes for both creating and restoring backup copies of your data store — either in
whole or in part – should be part of your resiliency plan. While the concepts of backing
up and restoring data are not new, there are new twists to this in the cloud, with
options for backup in multiple data centers in multiple geographic locations.

Your backup strategy should be defined with a conscious understanding of the busi-
ness requirements for restoring data. If a data store is corrupted or taken offline due a
disaster scenario, you need to know what type of data must be restored, what volume
must be restored, and what pace is required for the business. This will impact your
overall availability plan and should drive your backup and restore planning.

Creating Resilient Architectures on Microsoft Azure | Page 13

Implementation
When implementing your application or service in the cloud, you’ll have two choices
for how to deploy on Azure – Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service
(IaaS). The following diagram shows the varying levels of self-management versus
provider management for the different deployment models

Applications

Data

Runtime

Virtualization

Opearting System

Servers

Storage

Networking

MIddleware

Applications

Data

Runtime

Virtualization

Opearting System

Servers

Storage

Networking

MIddleware

Applications

Data

Runtime

Virtualization

Opearting System

Servers

Storage

Networking

MIddleware

Applications

Data

Runtime

Virtualization

Opearting System

Servers

Storage

Networking

MIddleware

On-Premise IaaS PaaS Saas

Self-Managed Provider-Managed

PAAS: PLATFORM-AS-A-SERVICE

Cloud platform services, or Platform-as-a-Service (PaaS), are used for application and
other development. What developers gain with PaaS is a framework they can build
upon to develop or customize applications. PaaS makes the development, testing and
deployment of applications quick, simple and cost-effective. With PaaS, your cloud
provider manages the operating systems, virtualization, servers, storage, networking
and the PaaS software itself. Developers, however, manage the applications.

IAAS: INFRASTRUCTURE-AS-A-SERVICE

Cloud infrastructure services, known as Infrastructure-as-a-Service (IaaS), are self-service
models for accessing, monitoring and managing remote data center infrastructures,
such as compute (virtualized or bare metal), storage, networking and networking
services (e.g. firewalls). Instead of having to purchase hardware outright, users can
purchase IaaS based on consumption, similar to electricity or other utility billing.

Creating Resilient Architectures on Microsoft Azure | Page 14

Compared to PaaS, IaaS users are responsible for managing applications, data, runtime,
middleware and operating systems. Providers still manage virtualization, servers, hard
drives, storage and networking. Many IaaS providers now offer databases, messaging
queues and other services above the virtualization layer as well. What users gain with
IaaS is infrastructure on top of which they can install any required platform. Users are
responsible for updating these if new versions are released.

IaaS is the most flexible cloud computing model and allows for automated deployment
of servers, processing power, storage and networking. IaaS clients have true control
over their infrastructure, unlike users of PaaS services.

THINGS TO CONSIDER WHEN CHOOSING PAAS OR IAAS

Reliability: PaaS provides some strong application management tooling, including
the ability to detect unstable or misbehaving application instances and take corrective
action. However, because of the increase in moving parts involved in a PaaS system,
there are more components to fail, and subsequently, increased instances where inter-
vention is required. So, PaaS may be more unreliable than IaaS.

Scalability: In a typical PaaS setup, increasing or decreasing the number of application
instances is as simple as issuing a command. This can be particularly useful for predict-
able high traffic events, or for manually reacting to unexpected bursts in traffic.

IaaS offers little out of the box in terms of instance scale. Assuming your application
servers are behind a load balancer, you can add more instances and then deploy the
latest version of your application to these instances to achieve the same outcome —
though you’re probably looking at 15 minutes instead of the 15 seconds for PaaS.

Application Lifecycle Management: If you go the IaaS route, you are responsible
for managing applications, from provisioning infrastructure and deploying application
changes to scaling application instances. Many quality tools exist in this space, but
you’re going to miss out on the turnkey access to them that PaaS provides.

PaaS platforms provide a uniform interface to perform common application manage-
ment tasks. A particular selling point is the ease with which you can replicate entire
environments. In simpler setups, you can expect to launch a clone of your entire
production environment in a couple of minutes.

IaaS vs PaaS Summary: To decide between IaaS or PaaS, you’ll want to consider the
application context and the associated long-term business goals. For instance, running
an application on bare IaaS is more affordable, but you will need a DevOps team to
maintain it. An automated PaaS is a bigger investment, but it can shrink release cycles
from weeks to hours and even eliminate some downsides.

Creating Resilient Architectures on Microsoft Azure | Page 15

PaaS has a definite economic advantage for operations over IaaS for commodity appli-
cations where cost of operations breaks the business model. On the other hand, IaaS
gives complete control of the OS and application platform stack, which is a require-
ment for a certain class of applications.

Risk management, agility, cost and nature of the solution are the drivers to consider
when deciding between IaaS and PaaS for your architecture solution.

MIGRATING TO AZURE

Migrating from an on-premises environment to the cloud seems simple enough. You
take what is working in your existing data center and copy it to the cloud provider’s
environment, make a few changes for networking and security, and you’re in business.
In reality, the process is rarely this simple.

There are two basic categories of approaches when moving to the cloud.

Lift & Shift: The phrase “lift & shift” refers to taking an existing resource (typically a
virtualized server) from either an on-premises environment or a hosted private cloud
environment and moving it to Azure. See below for a depiction of a typical “lift &
shift” scenario.

This means copying the virtualized server files to Azure and configuring them for the
Azure environment, including virtual networking and security features. The remainder
of the virtualized server can stay largely unchanged. This “lift & shift” approach can
be used with either Microsoft platform or Linux servers, assuming that the operating
system versions in either case are supported.

Azure CloudEnterprise Premises

Web
Tier

App
Tier

Data
Tier

VM VM VM VM

VM VM VM

VM VM

Creating Resilient Architectures on Microsoft Azure | Page 16

Replatforming: The other option is to migrate only the applications and data (and
potentially the security processes). This is the traditional PaaS approach and is often
appropriate if the organization is planning to upgrade or create a new version of the
application anyway. See below for a depiction of a typical replatforming scenario.

Depending on the development approach, replatforming in Azure can be as simple
as changing the deployment process and redeploying into the Azure environment.
Assuming modern development and testing practices, the only potentially difficult task
would be handling security (in the case of Active Directory).

Active Directory

Web Farm

SQL Server Cluster

On-Premises

Storage Servers

Azure

Azure
Active

Directory

Azure
SQL

Database

Blob
Storage

LOB Web App

Creating Resilient Architectures on Microsoft Azure | Page 17

Operation
To build a truly resilient architecture, it should be proactively designed for operations
from the beginning. In many cases, operations may not be planned until further along
in the lifecycle. Designing for operations typically will include key activities such as
establishing a health model, capturing telemetry information, incorporating health
monitoring services and workflows, and making this data actionable by both opera-
tions and developers.

ESTABLISH A HEALTH MODEL

Development teams often overlook and sometimes completely ignore application
health. As a result, services often go into production with two known states: up or
down. Designers of resilient services should develop health models that define applica-
tion health criteria, diminished health state, failure and health dependencies.

Proactively developing a health model outlines failure modes and points, requiring that
developers identify and study what-if scenarios in application design phases. To opera-
tionalize a health model, a service must be able to communicate its health. It must
have a programmatic way to broadcast such information, provide an interface for that
health status to be queried interactively, provide mechanisms (or hooks into existing
mechanisms) through which admins can monitor application health in real-time and
establish mechanisms through which admins can — when necessary — deliver correc-
tive “medicine” to return the application to a healthy state.

TELEMETRY CONSIDERATIONS

When identifying what data to collect and how to collect it, it is important to under-
stand the data and what you intend to do with it.

First, determine if the purpose of the data being collected is to inform or initiate an
action. The question to ask is, “How quickly should I react?” Will you use the data
near real time to potentially initiate an action? Alternatively, will you use the data in
a month over month trending report? The answer to these questions will inform the
telemetry approach and technologies used in the architecture.

Next, identify the type of questions you intend to apply to the telemetry data you are
collecting. Will you use the telemetry to answer known questions or for exploration?
For example, for a business, KPIs (key performance indicators) are answers to known
questions. However, a manufacturer who wants to explore device data for patterns
that result in faults would be venturing into the unknown. For the manufacturer, the
faults are derived from one or more items in the system. The manufacturer is doing
exploration and would require additional data.

Creating Resilient Architectures on Microsoft Azure | Page 18

When you use telemetry to gain insight, you must consider the time required to gain
that insight. In some cases, you will leverage telemetry to detect a spike in a device
sensor reading that has a window of seconds or minutes. In other cases, you may
use telemetry to identify week over week user growth for a website that has a much
longer window.

Consider the amount of data you can gather from a signal source within the timeframe
to gain insight. You must know the amount of the source signal you need. You can
then determine the best way to partition that signal and establish the appropriate mix
of local and global computation.

Another consideration is how to record the sequence of events in your telemetry. Many
organizations will default to time stamps. Time stamps, however, can be a challenge
because server clocks in and across data centers are inconsistent. While time may be
synchronized periodically, there is documented evidence that server clocks drift (slowly
become more inaccurate). This drift results in changes that may impair effective anal-
ysis. For scenarios that require precision, consider alternate solutions, such as leveraging
a vector clock implementation.

VISUALIZE TELEMETRY FOR OPERATIONS

Visualizing high-level operation status and lower-level telemetry data is important for
the operations staff. Automated notifications will likely be in place based on telem-
etry data. However, operations will want a dashboard that helps visualize current and
historical service performance.

For applications of significant scale, this information can help identify a current issue
quickly or predict a future issue. It can also help operations identify the potential
impacts and root causes.

Telemetry and reporting are particularly helpful in cases where operations can reme-
diate the errors without code modifications to the services themselves. Examples of
activities that operations performs can include deploying more roles and recycling
instances.

You can leverage the visualization of historical and real-time telemetry data for:

•	 Troubleshooting
•	 Post-mortems done for live site issues
•	 Training new operations staff

Creating Resilient Architectures on Microsoft Azure | Page 19

Scenarios
The following are real world scenarios showing some types of resiliency available with
Azure and how you might use them.

CLOUD BACKUP: ON-PREMISES TO AZURE

Azure Backup can be used for standard Windows Server configurations, Windows
client machines and servers protected by System Center Data Protection Manager
(DPM), as depicted in the diagram below. Azure backup stores redundant copies of
your data across different Azure data centers. The data is encrypted and transmitted
securely to the Azure data center and can be retained in Azure for up to 99 years.
Additionally, you manage the encryption keys for your on-premises environments.

On-Premises Data Center

Azure Backup Vault

DPM Protected Servers

Windows Servers

Azure Backup
Agent

System Center
DPM

Windows Clients
Azure Backup

Agent

Encrypted Data

TM

Creating Resilient Architectures on Microsoft Azure | Page 20

If you’re not currently using System Center DPM, you can configure and manage a
System Center DPM server in Azure itself. This allows on-premises systems to enjoy the
advantages of DPM without the complexity of managing an on-premises instance.

TRADITIONAL DISASTER RECOVERY (DR): ON-PREMISES TO AZURE

A DR-to-the-cloud deployment that leverages the Azure platform helps make the restora-
tion of your business operations possible by replicating both the enterprise application
environment and the data hosted by the applications running on-premises. Unlike a
backup model, where data must be restored to the original application environment,
DR-to-the-cloud brings replicated data up at a service provider site. That data then
temporarily runs on a replicated application environment at the target site to help ensure
complete business continuance until service onsite can be restored (see diagram below).

Technologies like Azure Site Recovery (ASR) can enable powerful and flexible DR solu-
tions that span both physical and virtual machines, automating replication and failover
to and between on-premises and Azure data centers. ASR allows you to replicate a
variety of workloads including Active Directory, web applications, ERP and CRM solu-
tions, and more. Rackspace engineers will help design the appropriate DR plan based
on recovery time objectives (RTO) and recovery point objectives (RPO).

BRIDGE THE GAP: PRIVATE CLOUD HYBRID – BURST TO AZURE

Building a hybrid environment using Azure provides the capability to augment
on-premises or hosted private cloud environments as required. This augmentation is
usually temporary and is called “bursting.”

Azure
Site

Recovery

Orchestration
Metadata

Orchestration
Metadata

DATA CHANNEL

COMPUTE STORAGE NETWORK COMPUTE STORAGE NETWORK

ACTIVE DIRECTORY ACTIVE DIRECTORY

Creating Resilient Architectures on Microsoft Azure | Page 21

Bursting capabilities are typically used in situations where high application usage
occurs on an infrequent basis. One example of this type of usage is online shopping
during the holiday season. Another is product announcements or other news that
might drive additional traffic to company web sites.

Through the use of Azure features such as auto-scaling web applications and Azure
SQL Data Sync facilities, additional traffic can be load-balanced into the Azure data
centers as needed and then scaled back once demand has decreased.

This ability to respond to high usage is one more way Azure can be utilized to create
a resilient architecture.

Creating Resilient Architectures on Microsoft Azure | Page 22

Conclusion
A highly available, resilient application absorbs fluctuations in availability, load and
temporary failures in the dependent services and hardware. Planning for and imple-
menting resiliency concepts permit the application to continue to operate at an accept-
able user and systemic response level as defined by business requirements or applica-
tion service level agreements.

Designing, implementing and operating a resilient architecture can be complex. You
need the appropriate knowledge and expertise at each step to achieve application
availability goals and meet business requirements.

When hardware or software fails in the cloud, the techniques and strategies for
managing them are different than when failure occurs in on-premises systems. Azure
detects and handles many failures, but there are many types of failures that require
application-specific strategies. You must actively prepare for and manage the failures of
applications, services and data.

Once you deploy your application, you cannot stop there. You must regularly analyze,
test and continually monitor your application portfolio, business needs and the tech-
nologies available to you. Azure provides both new capabilities and new challenges to
creating robust applications that withstand failures.

Resources
Rackspace downtime cost calculator:
http://www.rackspace.com/en-us/disaster-recovery-planning

Creating Resilient Architectures on Microsoft Azure | Page 23

Why Rackspace for Microsoft workloads?
Rackspace is the leader in the Gartner Magic Quadrant
for Cloud Enabled Managed Hosting, an accolade we
received from delivering the world’s best service on the
world’s leading technologies for over 15 years. We have
teams of Microsoft Certified Professionals that can help
you architect, design, deploy and manage your applica-
tions, whether they are on dedicated servers, private
clouds, SaaS platforms like Office 365, or even Microsoft
Azure itself.

We offer support on a number of technology stacks
and applications, including the following:

•	 Microsoft Azure

•	 Office 365

•	 Microsoft Cloud Platform on System Center
	 and Windows Azure Pack

•	 Microsoft SQL Server

•	 Microsoft Exchange

•	 Microsoft Windows Server

•	 Microsoft SharePoint

•	 Skype for Business

WHY RACKSPACE?

•	 A leader in the Gartner Magic Quadrant for
Cloud-Enabled Managed Hosting, North America
and Europe 2014 and 2015

•	 Hosting provider to 69% of the Fortune 100

•	 Extensive Microsoft Expertise:

o	Five-time Microsoft Hosting Partner
	 of the Year – more than any other partner

o	Microsoft Gold Certified Partner

o	Gold Partner Microsoft Cloud OS Network

o	200+ Microsoft certifications, including
	 MCITPs, MCSAs, MCSEs and MCTSs

o	 Industry-Leading Exchange Provider

o	#1 SharePoint Hosting Provider
	 (Outside of Microsoft)

o	Six SharePoint MVPs on Staff

o	85% of SharePoint Hosting Licenses
	 run on our servers

o	Redmond Reader’s Choice for

	 Best Hosted Exchange Provider

http://www.rackspace.com/cloud/private/microsoft-cloud-platform
http://www.rackspace.com/office-365
http://www.rackspace.com/cloud/private/microsoft-cloud-platform
http://www.rackspace.com/cloud/private/microsoft-cloud-platform
http://www.rackspace.com/data/managed-sql
http://www.rackspace.com/email-hosting
http://www.rackspace.com/microsoft/windows
http://sharepoint.rackspace.com
http://www.rackspace.com/skype-for-business

Creating Resilient Architectures on Microsoft Azure | Page 24

About Rackspace
Rackspace (NYSE: RAX), the #1 managed cloud company, helps businesses tap the power of cloud
computing without the challenge and expense of managing complex IT infrastructure and application
platforms on their own. Rackspace engineers deliver specialized expertise on top of leading technologies
developed by OpenStack®, Microsoft®, VMware® and others, through a results-obsessed service known as
Fanatical Support®.

GLOBAL OFFICES
Headquarters Rackspace, Inc.
1 Fanatical Place | Windcrest, Texas 78218 | 1-800-961-2888 | Intl: +1 210 312 4700
www.rackspace.com

UK Office

Rackspace Ltd.
5 Millington Road
Hyde Park Hayes
Middlesex, UB3 4AZ
Phone: 0800-988-0100
Intl: +44 (0)20 8734 2600
www.rackspace.co.uk

Benelux Office

Rackspace Benelux B.V.
Teleportboulevard 110
1043 EJ Amsterdam
Phone: 00800 8899 00 33
Intl: +31 (0)20 753 32 01
www.rackspace.nl

Hong Kong Office

9/F, Cambridge House, Taikoo Place
979 King’s Road,
Quarry Bay, Hong Kong
Sales: +852 3752 6488
Support +852 3752 6464
www.rackspace.com.hk

Australia Office

Rackspace Hosting Australia PTY LTD
Level 1
37 Pitt Street
Sydney, NSW 2000
Australia

© 2015 Rackspace US, Inc. All rights reserved.

This white paper is for informational purposes only. The information contained in this document
represents the current view on the issues discussed as of the date of publication and is provided “AS IS.”
RACKSPACE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS DOCUMENT AND RESERVES THE RIGHT
TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT/SERVICES DESCRIPTION AT ANY TIME WITHOUT
NOTICE. USERS MUST TAKE FULL RESPONSIBILITY FOR APPLICATION OF ANY SERVICES AND/OR PROCESSES
MENTIONED HEREIN. EXCEPT AS SET FORTH IN RACKSPACE GENERAL TERMS AND CONDITIONS, CLOUD
TERMS OF SERVICE AND/OR OTHER AGREEMENT YOU SIGN WITH RACKSPACE, RACKSPACE ASSUMES
NO LIABILITY WHATSOEVER, AND DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO ITS
SERVICES INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT.

Except as expressly provided in any written license agreement from Rackspace, the furnishing of this
document does not give you any license to patents, trademarks, copyrights, or other intellectual property.

Rackspace, Fanatical Support, and/or other Rackspace marks mentioned in this document are either
registered service marks or service marks of Rackspace US, Inc. in the United States and/or other countries.
OpenStack is either a registered trademark or trademark of OpenStack, LLC in the United States and/or
other countries. Third-party trademarks and tradenames appearing in this document are the property
of their respective owners. Such third-party trademarks have been printed in caps or initial caps and are
used for referential purposes only. We do not intend our use or display of other companies’ tradenames,
trademarks, or service marks to imply a relationship with, or endorsement or sponsorship of us by, these
other companies.

Modified: 11182015

http://www.rackspace.com
http://www.rackspace.co.uk
http://www.rackspace.nl
http://www.rackspace.com.hk

